The Fate of Nitrate in Intertidal Permeable Sediments
نویسندگان
چکیده
Coastal zones act as a sink for riverine and atmospheric nitrogen inputs and thereby buffer the open ocean from the effects of anthropogenic activity. Recently, microbial activity in sandy permeable sediments has been identified as a dominant source of N-loss in coastal zones, namely through denitrification. Some of the highest coastal denitrification rates measured so far occur within the intertidal permeable sediments of the eutrophied Wadden Sea. Still, denitrification alone can often account for only half of the substantial nitrate (NO3-) consumption. Therefore, to investigate alternative NO3- sinks such as dissimilatory nitrate reduction to ammonium (DNRA), intracellular nitrate storage by eukaryotes and isotope equilibration effects we carried out 15NO3- amendment experiments. By considering all of these sinks in combination, we could quantify the fate of the 15NO3- added to the sediment. Denitrification was the dominant nitrate sink (50-75%), while DNRA, which recycles N to the environment accounted for 10-20% of NO3- consumption. Intriguingly, we also observed that between 20 and 40% of 15NO3- added to the incubations entered an intracellular pool of NO3- and was subsequently respired when nitrate became limiting. Eukaryotes were responsible for a large proportion of intracellular nitrate storage, and it could be shown through inhibition experiments that at least a third of the stored nitrate was subsequently also respired by eukaryotes. The environmental significance of the intracellular nitrate pool was confirmed by in situ measurements which revealed that intracellular storage can accumulate nitrate at concentrations six fold higher than the surrounding porewater. This intracellular pool is so far not considered when modeling N-loss from intertidal permeable sediments; however it can act as a reservoir for nitrate during low tide. Consequently, nitrate respiration supported by intracellular nitrate storage can add an additional 20% to previous nitrate reduction estimates in intertidal sediments, further increasing their contribution to N-loss.
منابع مشابه
Tidal pumping facilitates dissimilatory nitrate reduction in intertidal marshes
Intertidal marshes are alternately exposed and submerged due to periodic ebb and flood tides. The tidal cycle is important in controlling the biogeochemical processes of these ecosystems. Intertidal sediments are important hotspots of dissimilatory nitrate reduction and interacting nitrogen cycling microorganisms, but the effect of tides on dissimilatory nitrate reduction, including denitrifica...
متن کاملInteractions between Benthic Copepods, Bacteria and Diatoms Promote Nitrogen Retention in Intertidal Marine Sediments
The present study aims at evaluating the impact of diatoms and copepods on microbial processes mediating nitrate removal in fine-grained intertidal sediments. More specifically, we studied the interactions between copepods, diatoms and bacteria in relation to their effects on nitrate reduction and denitrification. Microcosms containing defaunated marine sediments were subjected to different tre...
متن کاملDistributions, Sources and Contamination Assessment of Some Heavy Metals in Intertidal Surface Sediments of Khor-e-Yekshabeh Mangrove Estuary in Persian Gulf
The water quality of the Persian Gulf is influenced by various industrial and urban discharges. The study area is a small linked estuary with the Straits of Hormuz in the Persian Gulf. This study was conducted to evaluate anthropogenic assessment, pollution status and potential ecological risk of some heavy metals (Pb,Ni, Zn, and Fe) in intertidal surface sediments of a mangrove estua...
متن کاملTidal Effect on Dynamics of Pore Water Nitrate in Intertidal Sediment of a Eutrophic Estuary
To evaluate the effect of the tidal cycle on the pore water nitrate dynamics in intertidal sediment, concentrations of inorganic nitrogen in water and sediment were monitored during tidal cycles in the mud flat of Tama Estuary, Japan. During submergence, nitrate concentration was highest in the overlying water and decreased monotonically with increasing depth in the sediment, suggesting that th...
متن کاملA Doubling of Microphytobenthos Biomass Coincides with a Tenfold Increase in Denitrifier and Total Bacterial Abundances in Intertidal Sediments of a Temperate Estuary
Surface sediments are important systems for the removal of anthropogenically derived inorganic nitrogen in estuaries. They are often characterized by the presence of a microphytobenthos (MPB) biofilm, which can impact bacterial communities in underlying sediments for example by secretion of extracellular polymeric substances (EPS) and competition for nutrients (including nitrogen). Pyrosequenci...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014